GenAI训练数据的著作权规制困境与范式重构
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

福建省社科项目“涉众型数字资产犯罪的刑事治理体系研究”(项目编号:FJ2025C065)。


Copyright Regulation Dilemmas and Paradigm Reconstruction for GenAI Training Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    GenAI技术高度依赖于大规模、多元化的训练数据集,然而传统著作权框架在面对GenAI训练数据时显现出显著局限:一方面,合理使用制度因受制于海量数据使用目的复杂性和版权归属模糊性难以适用;另一方面,法定许可则因许可成本高昂、调控低效及著作权人分散等问题难以实施。故可以“无需许可,选择退出”的著作权使用机制,优化训练数据来源、作者权益保护;根据GenAI使用场景,细化数据使用报酬体系、探索数据共享池等收益分配新方式;强化输出端监管以提升AIGC质量,构建符合数字时代的训练数据著作权规制范式。

    Abstract:

    GenAI technologies rely heavily on large-scale, diverse training datasets; however, the traditional copyright framework exhibits significant limitations when dealing with GenAI training data. On the one hand, the fair use regime is difficult to apply due to the complexity of purposes involved in using massive datasets and the ambiguity of copyright ownership; on the other hand, statutory licensing is hard to implement because of high licensing costs, inefficient regulation, and the dispersed nature of right holders. Accordingly, a "no-permission-needed with opt-out" copyright use mechanism could be adopted to optimize training data sourcing and the protection of authors'' rights; remuneration schemes for data use could be refined based on GenAI application scenarios, and new benefit-sharing models - such as data-sharing pools - could be explored; and output-side oversight should be strengthened to improve the quality of AIGC, thereby constructing a copyright regulation paradigm for training data in line with the digital era.

    参考文献
    相似文献
    引证文献
引用本文

陈文兴,郜逢源. GenAI训练数据的著作权规制困境与范式重构[J].西昌学院学报(社会科学版),2025,37(5):97-107.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-05-29
  • 最后修改日期:2025-10-13
  • 录用日期:2025-07-04
  • 在线发布日期: 2025-10-28